1. Home
  2. Diamonds
  3. Validation
  4. Design
  5. DT EC 02: Lateral torsional buckling – constant

DT EC 02: Lateral torsional buckling – constant

Description

Geometry Cross-section: 70x221mm
Material: C24
Load ULS FC: 5.37kNm
Standard EN 1995-1-1 [- -]
Design parameters kmod:
LLT:
0.8
3m

Independent reference results

Open handcalculations

The effective beam length L_{eff} is given in Table 6.1 from EN 1995-1.

    \begin{align*} L_{eff}&= 0.9 \cdot L +2 \cdot h \\ &= 0.9 \cdot 3 \text{m} +2 \cdot 0.221 \text{m} \\ &= 3.14 \text{m} \\ L_{eff}&= \frac{L}{C_1} +2 \cdot h \text{  general case}\\ \end{align*}

Diamonds uses a factor 0.9 because there’s a uniform load on the beam. Although Diamonds assumes the loads act in the shear center, + 2 \cdot h is always added to L_{eff} to take into account that loads might act in the compression zone.
For deviating load distrutions and boundary conditions this method Serna, Lopez, Puente and Young is used to determine C_1. The 0.9 for a uniform load corresponds to a C_1=\frac{1}{0.9}=1.11.
The user can also impose C1 via .

Next we determine the critical bending stress \sigma_{m.crit}:

(6.31)   \begin{align*} \sigma_{m.crit}&=\frac{0.78 \cdot b^2 \cdot E_{0.05}}{h \cdot L_{ef}} \\ &=\frac{0.78 \cdot \left(70 \text{mm}\right)^2 \cdot 7370 \text{MPa}}{0.221 \text{m} \cdot 3.14 \text{m}}\\ &=40.57 \text{MPa} \end{align*}

The relative slenderness for bending \overline{\lambda_{m}}:

(6.30)   \begin{align*} \overline{\lambda_{m}}&=\sqrt{\frac{f_{m.k}}{\sigma_{m.crit}}} \\ &=\sqrt{\frac{24 \text{MPa}}{40.57 \text{MPa}}}\\ &=0.77 \end{align*}

Factor for the reduced bending strength k_{crit}:

(6.34)   \begin{align*} k_{crit}&=1.56 - 0.75 \cdot \overline{\lambda_{m}} \\ &=1.56 -0.75 \cdot 0.77\\ &=0.98 \end{align*}

The unity check UC:

(6.35)   \begin{align*} M_{y.Rd}&=W_y \cdot f_{m.d}\\ &=569812 \text{mm³} \cdot \frac{k_{mod} \cdot f_{m.k}}{\gamma_m}\\ &=569812 \text{mm³} \cdot \frac{0.8 \cdot 24 \text{MPa}}{1.3}\\ &=8.4 \text{kNm}\\ UC&=\left( \frac{M_{Ed}}{k_{crit} \cdot M_{Rd}} \right)^2 + \frac{N_{c.Ed}}{k_{c.z} \cdot N_{Rd}}\\ &=\left( \frac{5.37 \text{kNm}}{0.98 \cdot 8.4 \text{kNm}} \right)^2 + 0\\ &= 64.91 \% \end{align*}

Diamonds results and comparison

Stability verification of the beam according to EN 1995-1-1

Intermediate results in Diamonds for lateral torsional buckling

Results Independent reference Diamonds Difference
L_{eff} 3.14m 3.14m 0,00%
\sigma_{m.crit} 40.57MPa 40.57MPa 0,00%
\overline{\lambda_{m}} 0.77 0.77 0,00%
k_{crit} 0.98 0.98 0,00%
Unity check 64.91% 64.91% 0,00%

References

  • Tested in Diamonds 2025.

Article Attachments

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!
CONTACT SUPPORT