1. Home
  2. Diamonds
  3. Validation
  4. Design
  5. DS EC 06: Buckling y’ and lateral torsional buckling (Method 1) of an I-section

DS EC 06: Buckling y’ and lateral torsional buckling (Method 1) of an I-section

Description

Geometry Cross-section: IPE 500
Material: S235
Load ULS FC: M_y=200 \text{kNm}
M_z=12.5 \text{kNm}
N=500 \text{kN}
Standard EN 1993-1-1 [- -]
Design parameters Section class 1 for pure bending
Ly=Lz=3.75m
LLT=3.75m

This article verifies the interaction of buckling and lateral torsional buckling due to axial force and bending around the strong axis. Methode 1 in Eurocode (EN 1993-1-1 Annex A) is used.

Independent reference results

Open handcalculations for individual buckling and LTB
To perform the check “Uniform member in bending and axial compression” according to EN 1993-1-1 §6.3.3, we need a few factors related to buckling resistance. We’ll determine those here without much context. The context is already can be found here.

Buckling around the strong axis y’

(6.50)   \begin{align*} N_{cr.y}&=\frac{\pi^2\cdot E\cdot I_y}{l_{cr.y}^2}=71042.7\text{kN}\\ \overline{\lambda_y}&=\sqrt{\frac{A \cdot f_y}{N_{cr.y}}} =0.195\\ \chi_{y}&=1 \end{align*}

Because the relative slenderness \overline{\lambda_y} is smaller than 0.2, \chi_{y} equals 1.

Buckling around the weak axis z’

(6.50)   \begin{align*} N_{cr.z}&=\frac{\pi^2\cdot E\cdot I_z}{l_{cr.z}^2}=3156.6\text{kN}\\ \overline{\lambda_z}&=\sqrt{\frac{A \cdot f_y}{N_{cr.z}}}=0.93 \\ \phi_z&=0.5\left( 1+\alpha_z\left(\overline{\lambda_z}-0.2 \right) + \overline{\lambda_z}^2 \right) =1.05\\ \chi_z&=min\left( \frac{1}{\phi_z+\sqrt{\phi_z^2-\overline{\lambda_z}^2}};1 \right)=0.64 \end{align*}

Torsional buckling (buckling around the x’ axis)

    \begin{align*} N_{cr.T}&=\frac{A}{I_y+I_z} \left( G \cdot I_t + \frac{\pi^2 \cdot E \cdot I_w}{L_{LT}^2} \right)=5880.5\text{kN} \end{align*}

Lateral torsional buckling

We only included the intermediar results. If you want to learn more about the resistance again laterial torsional buckling, follow this example.

    \begin{align*} M_1&=M_5=100\text{kNm}\\ M_2&=M_4=-124.1\text{kNm}\\ M_3&= M_{max}=-198.8\text{kNm}\\ k&=k_z=1\\ A_1 &=\frac{M_{max}^{2}+9k \cdot M_2^2+16 \cdot M_3^2 + 9k \cdot M_4^2}{\left( 1+9k+16+9k \right)\cdot M_{max}^{2}} =0.69\\ A_2 &=\frac{M_{max} +4 \cdot M_1 + 8 \cdot M_2 + 12 \cdot M_3 + 8 \cdot M_4 + 4 \cdot M_5}{37\cdot M_{max}}=0.51\\ C_1 &=\frac{\sqrt{\sqrt{k} \cdot A_1 + \left(0.5 \cdot \left( 1-\sqrt{k} \right) \cdot A_2 \right)^2 }+0.5 \cdot \left( 1 - \sqrt{k} \right)\cdot A_2}{A_1}=1.21\\ M_{cr}&=C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \sqrt{\left( \frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z}+\frac{(k_z L)^2 G I_t}{\pi^2 E I_z}}=1085 \text{kNm}\\ \overline{\lambda_{LT}} &= max\left( \sqrt{\frac{W_y \cdot f_y}{M_{cr}}},0.2 \right)=0.689\\ \varPhi_{LT} &=0.5 (1+ \alpha_{LT}\cdot (\bar{\lambda_{LT}}-0.2)+\bar{\lambda_{LT}}^2)=0.821\\ \chi_{LT} &=min\left( \frac{1}{\varPhi_{LT}+\sqrt{\varPhi_{LT}^2-\bar{\lambda_{LT}}^2}},1 \right)=0.790\\ \end{align*}

Open handcalculations for interaction

Moment factor Cmi.0

The general formula for combined end moment and transverse loads is used to determine C_{my.0}:

    \begin{align*} \delta_y&=2.59mm \\ C_{my.0}&=1+\left( \frac{\pi^2\cdot E\cdot I_y \cdot \delta_y }{L^2 \cdot M_{y.Ed}} -1 \right)\frac{N_{Ed}}{N_{cr.y}}\\ &=1+\left( \frac{\pi^2\cdot 210\text{GPa}\cdot 482017810mm^4 \cdot 2.59mm }{\left( 3.75m \right)^2 \cdot 200 \text{kNm}} -1 \right)\frac{500\text{kN}}{71042.7\text{kN}} \\ &= 0.999 \end{align*}

The formula for linearly distributed bending moment is used to determine C_{mz.0}:

    \begin{align*} \Psi_z&=\frac{M_{z.Ed.right}}{M_{z.Ed.left}}=\frac{0}{25 \text{kNm}}=0 \\ C_{mz.0}&=0.79+0.21 \cdot \Psi_z + 0.36 \left( \Psi_z -0.33 \right) \frac{N_{Ed}}{N_{cr.z}} \\ &=0.79+0.21 \cdot 0 + 0.36 \left( 0 -0.33 \right) \frac{500 \text{kN}}{3156.6 \text{kN}}\\ &=0.771 \end{align*}

Equivalent moment factors Cmi

    \begin{align*} M_{cr.0} &= \sqrt{\frac{\pi^2\cdot E \cdot I_z}{L_{LT}^2} \left( G \cdot I_t + \frac{\pi^2 E \cdot I_w}{L_{LT}^2} \right)} \\ &= \sqrt{\frac{\pi^2 \cdot 210 \text{GPa} \cdot 21417007 mm^4}{\left( 3.75m \right)^2} \left( 80769 \text{MPa} \cdot 892870 mm^4 + \frac{\pi^2 \cdot 210 \text{GPa} \cdot 1.2494 \cdot 10^{12} mm^6}{\left( 3.75m \right)^2} \right)} \\ &=899.4 \text{kNm}\\ \overline{\lambda_0}&=\sqrt{\frac{W_{pl.y} \cdot f_y}{M_{cr.0}}} \\ &=\sqrt{\frac{2194261mm^3 \cdot 235 \text{MPa}}{899.4 \text{kNm}}} \\ &= 0.757\\ \overline{\lambda_{0.lim}}&=0.2 \sqrt{C_1}\sqrt[4]{\left( 1-\frac{N_{Ed}}{N_{cr.z}} \right) \cdot \left( 1-\frac{N_{Ed}}{N_{cr.T}} \right)} \\ &=0.2 \sqrt{1.201}\sqrt[4]{\left( 1-\frac{500 \text{kN}}{3156.6\text{kN}} \right) \cdot \left( 1-\frac{500 \text{kN}}{5880.5\text{kN}} \right)}\\ &=0.206 \end{align*}

Because \lambda_

    \begin{align*} \varepsilon_y&=\frac{M_{y.Ed}}{N_{Ed}} \cdot \frac{A}{W_{y.el}}=\frac{200 \text{kNm}}{500 \text {kN}} \cdot \frac{11552.8mm^2}{1928071 mm^3}\\ &=2.4\\ a_{lt}&=max\left( 1-\frac{I_t}{I_y};0 \right)=max\left( 1-\frac{892870 mm^4}{482017810mm^4};0 \right)\\ &=0.998\\ C_{my}&=C_{my.0} + \left( 1- C_{my.0} \right) \cdot \frac{\sqrt{\varepsilon_y} \cdot a_{lt}}{1 + \sqrt{\varepsilon_y} \cdot a_{lt}} \\ &=0.999 + \left( 1- 0.999 \right) \cdot \frac{\sqrt{2.4} \cdot 0.998}{1 + \sqrt{2.4} \cdot 0.998}\\ &=1\\ C_{mz}&=C_{mz.0}\\ C_{mLT}&=max\left( C_{my}^2 \cdot \frac{a_{lt}}{\sqrt{\left( 1-\frac{N_{Ed}}{N_{cr.z}} \right) \cdot\left( 1-\frac{N_{Ed}}{N_{cr.T}} \right)}},1 \right) \\ &=max\left( 1^2 \cdot \frac{0.998}{\sqrt{\left( 1-\frac{500 \text{kN}}{3156.6\text{kN}} \right) \cdot\left( 1-\frac{500 \text{kN}}{5880.4 \text{kN}} \right)}},1 \right) \\ &=1.137 \end{align*}

Plasticity factors Cij

    \begin{align*} b_{LT}&= 0.5 \cdot a_{lt} \cdot \overline{\lambda_0}^2 \cdot \frac{M_{y.Ed}}{\chi_{LT} \cdot W_{y.pl} \cdot f_{yd}} \cdot \frac{M_{z.Ed}}{W_{z.pl} \cdot f_{yd}}\\ &= 0.5 \cdot 0.998 \cdot 0.757^2 \cdot \frac{200 \text{kNm}}{0.79 \cdot 2194261 mm^3 \cdot 235 \text{MPa}} \cdot \frac{12.5\text{kNm}}{335887mm^3 \cdot 235 \text{MPa}}\\ &= 0.022\\ c_{LT}&= 10 \cdot a_{lt} \cdot \frac{\overline{\lambda_0}^2}{5+\overline{\lambda_z}^4} \cdot \frac{M_{y.Ed}}{C_{my} \cdot \chi_{LT} \cdot W_{y.pl} \cdot f_{yd}} \\ &= 10 \cdot 0.998 \cdot \frac{0.757^2}{5+0.93^4} \cdot \frac{200 \text{kNm}}{1 \cdot 0.79 \cdot 2194261mm^3 \cdot 235 \text{MPa}} \\ &= 0.49\\ w_y&= min\left( \frac{W_{y.pl}}{W_{y.el}};1.5 \right)= min\left( \frac{2194261 mm^3}{1928071 mm^3};1.5 \right) \\ &= 1.138\\ w_z&= min\left( \frac{W_{z.pl}}{W_{z.el}};1.5 \right)= min\left( \frac{335887 mm^3}{214170 mm^3};1.5 \right) \\ &= 1.5 \\ C_{yy}&=max\left(1+ \left( w_y-1 \right) \cdot \left( \left( 2-\frac{1.6 \cdot C_{my}^2 \cdot \overline{\lambda_{max}}}{w_y} - \frac{1.6 \cdot C_{my}^2 \cdot \overline{\lambda_{max}}^2}{w_y} \right) \cdot n_{pl}- b_{LT} \right) ; \frac{W_{y.pl}}{W_{y.el}}\right) \\ &= 0.984 \\ C_{yz}&=max\left(1+ \left( w_z-1 \right) \cdot \left( \left( 2-\frac{14 \cdot C_{mz}^2 \cdot \overline{\lambda_{max}}^2}{w_z^5} \right) \cdot n_{pl}- c_{LT} \right) ; 0.6 \cdot \sqrt{\frac{w_z}{w_y}} \cdot \frac{W_{y.el}}{W_{y.pl}}\right) \\ &= 0.852\\ \end{align*}

Interaction factors kij

    \begin{align*} \mu_y&= \frac{1-\frac{N_{Ed}}{N_{cr.y}}}{1- \chi_y \cdot \frac{N_{Ed}}{N_{cr.y}}} = \frac{1-\frac{N_{Ed}}{N_{cr.y}}}{1- 1 \cdot\frac{N_{Ed}}{N_{cr.y}}} =1 \\ k_{yy}&= C_{my} \cdot C_{mLT} \cdot \frac{\mu_y}{1-\frac{N_{Ed}}{N_{cr.y}}} \cdot \frac{1}{C_{yy}} \\ &= 1 \cdot 1.137 \cdot \frac{1}{1-\frac{500 \text{kN}}{71042\text{kN}}} \cdot \frac{1}{0.984} \\ &= 1.163\\ k_{yz}&= C_{mz} \cdot \frac{\mu_y}{1-\frac{N_{Ed}}{N_{cr.z}}} \cdot \frac{1}{C_{yz}} \cdot 0.6 \cdot \sqrt{\frac{w_z}{w_y}} \\ &=C_{mz} \cdot \frac{1}{1-\frac{500 \text{kN}}{3156.6 \text{kN}}} \cdot \frac{1}{0.852} \cdot 0.6 \cdot \sqrt{\frac{1.5}{1.138}} \\ &= 0.740\\ \end{align*}

Unity check

    \begin{align*} UC&=\frac{N_{Ed}}{\chi_y \cdot N_{Rd}} + k_{yy} \cdot \frac{M_{y.Ed}}{\chi_{LT} \cdot M_{y.Rd}}+ k_{yz} \cdot \frac{M_{z.Ed}}{M_{z.Rd}}\\ &=\frac{500 \text{kN}}{1 \cdot 2714.9\text{kN}} + 1.163 \cdot \frac{200 \text{kNm}}{0.79 \cdot 515.7 \text{kNm}}+ 0.740 \cdot \frac{12.5 \text{kNm}}{78.9 \text{kNm}}\\ &=87.2\% \end{align*}

Diamonds results and comparison

Intermediate results for lateral torsional buckling calculated by Diamonds (EN 1993-1-1 Method 1)

Results Independent reference Diamonds Difference
C_{my} 1.000 1.000 0%
C_{mz} 0.771 0.771 0%
C_{mLT} 1.137 1.137 0%
C_{yy} 0.984 0.984 0%
C_{yz} 0.852 0.854 0.24%
k_{yy} 1.164 1.164 0%
k_{yz} 0.739 0.739 0%
Unity check 87.2% 86.9% -0,35%

References

  • Tested in Diamonds 2025.

Article Attachments

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!
CONTACT SUPPORT