SLX 09: prestressed bar


Material Modulus of elasticity E =210 000N/mm^2
Poisson’s ratio \nu= 0.25
Thermal delation \alfa= 0.000 01 / ^{\circ}C
Geometry Cross-section bar A-D-F-B: Area A = 15 160 mm^2
bar A-D-F-B: Moment of intertia I = 217 400 000 mm^4
bars DC & EF: Area A = 3 480 mm^2
bars DC & EF: Moment of intertia I = 2 000 000 mm^4
bar A-C-E-B: Area A = 4 500 mm^4
bar A-C-E-B: Moment of intertia I = 2 000 000 mm^4
Factor for shear for all bars \lambda = 2.50
Boundary conditions Point A Simple support
Point B Roller support
bars DC & EF Hinged at both ends
Loads on bar A-D-F-B q = 50 kN/m
on bar CE shortening of 6.52mm

Note: the shortening is modelled as a temperature load in Diamonds. A shortening of 6,52mm corresponds to a temperature decrease of 163°C.

    \[ \Delta T=\frac{\Delta L}{\alpha \cdot L}=\frac{-6.52mm}{0,00001 /^{\circ}C  \cdot 4000mm}=-163^{\circ}C \]


Deformation \delta_y in Diamonds

Location Which result Independent reference Diamonds Difference
bar CE Tensile force N 585,584kN 584,549kN -0,18%
H Bending moment M_y 49,249kNm 49,249kNm -0%
D Deformation \delta_y -0,5428mm -0.5418mm -0,18%


  • Mécaniciens, S. F. D. (1990). Guide de validation des progiciels de calcul des structures: SSLL 13: poutre sous-tendue.
  • Tested in Diamonds 2023r01.

Article Attachments

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!