SLX 05: frame with lateral connections


Material Modulus of elasticity E = 200 000 N/mm^2
Geometry Cross-section bar AB: moment inertia I = 213 333 mm^4
bars AC & AD: moment inertia I = 833 mm^4
bar AE: moment inertia I = 13 333 mm^4
Boundary conditions Point A Simple support
Points D, E, B Fixed support
Loads in point G F = 100 kN
on bar AB p = 1 kN/m

Note: the shortening is modelled as a temperature load in Diamonds. A shortening of 6,52mm corresponds to a temperature decrease of 163°C.

    \[ \Delta T=\frac{\Delta L}{\alpha \cdot L}=\frac{-6.52mm}{0,00001 /^{\circ}C  \cdot 4000mm}=-163^{\circ}C \]


Bending moment M_y in Diamonds

Location Which result Independent reference Diamonds Difference
A Angular rotation \varphi_z 0,227 118 rad 0,227 133 rad 0,01%
point A in bar AB Bending moment M_y 11,023 72 kNm 11,023 59 kNm 0,00%
point A in bar AC Bending moment M_y 0,113 56 kNm -0,113 57 kNm 0,01%
point A in bar AD Bending moment M_y -12,348 59 kNm 12,348 53 kNm 0,00%
point A in bar AE Bending moment M_y 1,211 30 kNm 1,211 37 kNm 0,01%


  • Mécaniciens, S. F. D. (1990). Guide de validation des progiciels de calcul des structures: SSLL 10: portique à liaisons latérales.
  • Tested in Diamonds 2023r01.

Article Attachments

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!