SLS 05: Thin cylinder under a uniform axial load


Material Modulus of elasticity E = 210 000 N/mm^2
Poisson’s ratio \nu= 0.3
Geometry Cross-section Thickness e=2 mm
Boundary conditions At bottom edge R_y fixed
Loads On top edge q=10kN/m
Mesh Maximum element size 0.05m
Minimum element size 0.00m



    \[\sigma_1=\sigma_{zz}=\frac{p}{e}=\frac{10kN/m}{0,02m}=5 N/mm^2\]

    \[\Delta R=\delta_x=\delta_z=\frac{p \cdot \nu \cdot R}{E \cdot e}=\frac{10kN/m \cdot 4m \cdot 1m}{210000N/mm^2 \cdot 0,02m}=0,000 714mm\]

    \[\Delta y=\delta_y=\frac{p \cdot L}{E \cdot e}=\frac{10kN/m \cdot 4m}{210000N/mm^2 \cdot 0,02m}=0,009524mm\]

Deformation \delta_y in Diamonds

Point Which result Independent reference Diamonds Difference
mid stress \sigma_zz 0,5N/mm² 0,5N/mm² 0,00%
max Longitudinal deformation delta_y 0,009524mm 0,009525mm 0,01%
max Radial deformation \delta_x and \delta_z 0,000714mm 0,000750mm 5,00%


  • Mécaniciens, S. F. D. (1990). Guide de validation des progiciels de calcul des structures: SSLS 07: cylindre mince sous charge axiale uniforme.
  • Roark, R. J., & Young, W. C. (2002). Roark’s Formulas for Stress and Strain (7th edition, Table 13.1 case 1a). McGraw-Hill Companies.
  • Tested in Diamonds 2023r01.

Article Attachments

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!