TLS 01: Plate under temperature load

Description

Material Modulus of elasticity
Possion’s ratio
E=200 000 N/mm^2
\upsilon = 0.3
Thermal dilation \alpha =0.000 010/ ^{\circ}C
Geometry Plate thickness t=10mm
Boundary conditions Fixed along all sides
Loads Lineair gradient in local y’ direction \Delta T = 100 ^{\circ}C
Mesh Max. element size:
Min. element size:
0,1m
0,0m

Independent reference results

Open handcalculations
  • Calculate the bending stiffness

        \[D=\frac{E \cdot t^3}{12 \cdot \left ( 1-\upsilon ^2 \right )}=18.315 \text{kNm}\]

    • Bending moment M_{xx}

    \[M_{xx}=-\frac{\alpha \cdot \Delta T\cdot \left ( 1+\upsilon \right )\cdot D}{t}= - 2381.0 \frac{N \cdot m}{m}\]

    • Stress \sgima_{xx}

    \[\sigma _{xx}=\frac{6 \cdot M_{xx}}{t^2} = -142.9 \frac{N}{mm^2}\]

Diamonds results and comparison

Bending moment M_{xx} and stress \sigma_{xx} calculated by Diamonds

Independent reference Diamonds Difference
Bending moment in the local x’-direction M_{xx} -2381.0 kNm -2381.0 kNm 0%
Elastic stress in the local x’-direction \sigma_{xx} -142.9\frac{N}{mm^2} -142.9\frac{N}{mm^2} 0%

References

  • Mécaniciens, S. F. D. (1990). Guide de validation des progiciels de calcul des structures: HSLS 01: plaque mince se déformant suivant une surface sphérique
  • Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. McGraw-Hill Publishing Company.
  • Timoshenko, S., & Woinowsky-Krieger, S. (1948). Strenght of MaterialsPART II. D. Van Nostrand Company.
  • Tested in Diamonds 2024r01.

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!
CONTACT SUPPORT