1. Home
  2. Diamonds
  3. Validation
  4. Design
  5. DC EC 02: longitudonal reinforcement in beam under pure bending (ULS FC design)

DC EC 02: longitudonal reinforcement in beam under pure bending (ULS FC design)

Description


(same model as DC EC 01)

Geometry Cross-section: b=200mm
h=400mm
Material: C25/30
Concrete cover: c=40mm
Load Self-weight:
Dead loads:
neglected
P=15kN at end of span
Internal forces M_{Ed.ULS}=81\text{kNm}
Standard EN 1992-1-1 [- -] and [BE]

Independent reference results

Handcalculation according to EN 1992-1-1 --

Required reinforcement:

    \[d=h-c=400mm-40mm=360mm\]

    \[\mu _d=\frac{M_{Ed.ULS}}{b\cdot d^2\cdot f_{cd}}=\frac{81\text{kNm}}{200mm\cdot (360mm)^2\cdot 16.7\text{MPa}}=0.190\]

Table 3 from Gewapend beton: numeri (click here to open the Table) shows \omega _1 as a function of \mu _d, and we find:

    \[\omega _1=0.210\]

    \[A_{s1}=\omega _1 \cdot b\cdot d\cdot \frac{f_{cd}}{f_{yd}}=0.210 \cdot 200mm \cdot 360mm \cdot \frac{16.7\text{MPa}}{434.8\text{MPa}}=581mm^2\]

Minimum reinforcement:

(9.1N)   \begin{align*} A_{s.min}&=\max (0.26\cdot \frac{f_{ctm}}{f_{yk}}; 0.0013) \cdot b \cdot h \\ &=\max (0.26 \cdot \frac{2.56\text{MPa}}{500\text{MPa}}; 0.0013) \cdot 200mm \cdot 400mm\\ &=107mm^2 \end{align*}

Diamonds calculates the minimum reinforcement with h instead of d because for more complex cross-section shapes, d is not unambiguously defined. Therefor h is a safe alternative.

Handcalculation according to EN 1992-1-1 BE

Required reinforcement:

    \[d=h-c=400mm-40mm=360mm\]

    \[\mu _d=\frac{M_{Ed.ULS}}{b\cdot d^2\cdot \alpha_{cc} \cdot f_{cd}}=\frac{81\text{kNm}}{200mm\cdot (360mm)^2\cdot 0.85 \cdot 16.7\text{MPa}}=0.216\]

Table 3 from Gewapend beton: numeri (click here to open the Table) shows \omega _1 as a function of \mu _d.

    \[\omega _1=0.216\]

    \[A_{s1}=\omega _1 \cdot b\cdot d\cdot \frac{\alpha_{cc} \cdot f_{cd}}{f_{yd}}=0.216 \cdot 200mm \cdot 360mm \cdot \frac{0.85 \cdot16.7\text{MPa}}{434.8\text{MPa}}=595mm^2\]

Minimum reinforcement:

(9.1N)   \begin{align*} A_{s.min}&=\max (0.26\cdot \frac{f_{ctm}}{f_{yk}}; 0.0013) \cdot b \cdot h \\ &=\max (0.26 \cdot \frac{2.56\text{MPa}}{500\text{MPa}}; 0.0013) \cdot 200mm \cdot 400mm\\ &=107mm^2 \end{align*}

Diamonds calculates the minimum reinforcement with h instead of d because for more complex cross-section shapes, d is not unambiguously defined. Therefor h is a safe alternative.

Diamonds results and comparison

According to EN 1992-1-1 [- -]

Longitudonal reinforcement calculated by Diamonds (EN 1992-1-1 [- -])

Results Independent reference Diamonds Difference
Maximum longitudonal reinforcement 765 mm² 768 mm² -0,45%
Minimum longitudonal reinforcement 107 mm² 107 mm² 0,00%

According to EN 1992-1-1 [BE]

Longitudonal reinforcement calculated by Diamonds (EN 1992-1-1 [BE])

Results Independent reference Diamonds Difference
Maximum longitudonal reinforcement 798 mm² 798 mm² 0,00%
Minimum longitudonal reinforcement 107 mm² 107 mm² 0,00%

References

  • Tested in Diamonds 2024r01.

Article Attachments

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!
CONTACT SUPPORT