1. Home
  2. Diamonds
  3. Timber design
  4. Shear check for timber

Shear check for timber

According to EN 1995-1-1 §6.1.7 (1)P the shear check implies:

    \[ \tau_d \leq f_v_._d \]

with

  • \tau_d the design shear stress</li>  	<li>f_v_._d

          the design shear strength (= a material property)</li> </ul> From any course on mechanics, you can find that the maximal shear stress in a rectangular section equals: <span class="ql-right-eqno">   </span><span class="ql-left-eqno">   </span><img src="https://support.buildsoft.eu/wp-content/ql-cache/quicklatex.com-67920c7763b862871049acb8de018d00_l3.png" height="37" width="80" class="ql-img-displayed-equation quicklatex-auto-format" alt="\[ \tau_d=\frac{3 V_E_d}{2 A} \]" title="Rendered by QuickLaTeX.com"/> Combining both equations gives: <span class="ql-right-eqno">   </span><span class="ql-left-eqno">   </span><img src="https://support.buildsoft.eu/wp-content/ql-cache/quicklatex.com-2ca2f387ee4a9fb4597011deffa5215f_l3.png" height="37" width="94" class="ql-img-displayed-equation quicklatex-auto-format" alt="\[ \frac{3 V_E_d}{2 A} \leq f_v_._d \]" title="Rendered by QuickLaTeX.com"/> or <span class="ql-right-eqno">   </span><span class="ql-left-eqno">   </span><img src="https://support.buildsoft.eu/wp-content/ql-cache/quicklatex.com-a5449bf6a801bac2a254feebe26f7220_l3.png" height="37" width="108" class="ql-img-displayed-equation quicklatex-auto-format" alt="\[ V_E_d \leq \frac{2 f_v_._d A}{3} \]" title="Rendered by QuickLaTeX.com"/> The area

    Aof a rectangular section equalsb h

        : <span class="ql-right-eqno">   </span><span class="ql-left-eqno">   </span><img src="https://support.buildsoft.eu/wp-content/ql-cache/quicklatex.com-4a63a90d39adf85e9db882c9d032b49b_l3.png" height="36" width="114" class="ql-img-displayed-equation quicklatex-auto-format" alt="\[ V_E_d \leq \frac{2}{3}  b h f_v_._d \]" title="Rendered by QuickLaTeX.com"/> Yet EN 1995-1-1: 2004/A1:2008 §6.1.7 (2) states that the effective width

    b_e_f_f=k_c_r  should be used instead of the widthb  to take the influence of cracks into account.k_c_r = 0,67 for solid and glued laminated timber,k_c_r= 1,0$ for all other wood based products.

        \[ V_E_d \leq \frac{2}{3} b_e_f_f h  f_v_._d = \frac{2}{3}  k_c_r b h f_v_._d  = \frac{2}{3}  \frac{2}{3} b h f_v_._d = \frac{2}{3}  A_e_f_f f_v_._d \]

Was this article helpful?

Related Articles

Need Support?
Can't find the answer you're looking for? Don't worry we're here to help!
CONTACT SUPPORT