
## Torsional rigidity of one way slabs

The purpose of this document is

- to explain what the torsion factor  $\tau$  for one way slabs in Diamonds represents
- to indicate which value you should take for the torsion factor.
- and to illustrate how the torsion factor first into the stiffness matrix.



The document 'The stiffness of plates'  $^1$  explains how a stiffness matrix [K] looks like and how it is determined.

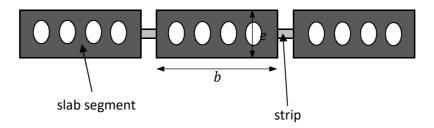
$$[K] = \begin{bmatrix} d_{xx} & d_{v} & 0 & 0 & 0 & 0 \\ d_{v} & d_{zz} & 0 & 0 & 0 & 0 \\ 0 & 0 & d_{xz} & 0 & 0 & 0 \\ & & & D_{xx} & D_{v} & 0 \\ sym & & D_{v} & D_{zz} & 0 \\ & & & 0 & 0 & D_{xz} \end{bmatrix}$$

With the goal of this document in mind, we are particularly interested in the torsional rigidity  $D_{xz}$ .

• The torsional rigidity  $D_{\chi z2}$  of a two directions slab is (Source: Plates and FEM, equ. 21.1):

$$D_{xz2} = \frac{Ee^3}{12(1-v^2)} \cdot 0.5 (1-v)$$

• Since a one direction slab only has a different stiffness in both directions, the torsional rigidity  $D_{\chi\chi}$  of a one direction slab is calculated as the mean value of both directions (Source: Plates and FEM, equ. 21.12):


$$D_{xz1} = 0.5 \cdot G \cdot i_{av} = 0.5 \cdot G \cdot \frac{(i_{xz} + i_{zx})}{2} = 0.5 \cdot \frac{E}{2(1+v)} \cdot \frac{(i_{xz} + i_{zx})}{2}$$

<sup>&</sup>lt;sup>1</sup> http://buildsoftsupport.com/knowledge-base/stiffness-matrix/



With G the shear modulus,  $i_{xz}$  and  $i_{zx}$  the torsion constants in respectively the x'-direction and z'- direction smeared out over with width of one floor segment.

An one direction slab in Diamonds has no bearing capacity in the z'-direction, so  $i_{zx}\approx 0$ . The torsional constant in the x'-direction  $i_{xz}$  is derived by considering the slab as a sequence of slab-segments with thickness e and width b. All slab segments are connected by a strip with thickness e/1000.



One slab segment is one hollow-core slab.

The torsional constant for each slab segment (neglecting the holes) equals (Source: Berekening van constructies, deel I, §2.4):

$$i_{xz} = \frac{e^3 \cdot b}{16} \left[ \frac{16}{3} - \frac{3,36e}{b} \left( 1 - \frac{e^4}{12b^4} \right) \right]$$

Thus the torsional rigidity  $D_{xz1}$  for a one way slab becomes:

$$D_{xz1} = 0.5 \cdot G \cdot \frac{i_{xz}}{2} = 0.5 \cdot \frac{E}{2(1+v)} \cdot \frac{i_{xz}}{2}$$

The **torsion factor**  $\tau$  is the ratio of the torsional stiffness  $D_{xz1}$  of a one way slab to the torsional stiffness  $D_{xz2}$  of a two way slab.

$$\tau = \frac{D_{xz1}}{D_{xz2}}$$

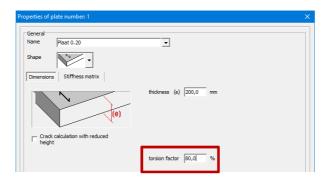
Or:

$$D_{xz1} = \tau \cdot D_{xz2}$$

So in Diamonds the torsional stiffness  $D_{xz1}$  of a one way slab equals the torsion factor multiplied by the torsional stiffness  $D_{xz2}$  of a two way slab with the same thickness.



In order to suggest a meaningful value for the torsion factor  $\tau$ , we calculated the torsional rigidity of a one way slab  $D_{xz1}$  for different width b to thickness e ratio's. The torsional rigidity of a one way slab  $D_{xz1}$  is divided by the torsional rigidity of a two way slab with the same thickness in order to obtain the torsion factor  $\tau$ .


| <i>b/e</i><br>[-] | $egin{aligned} D_{xz1} \ [kNm] \end{aligned}$ | τ<br>[%] |
|-------------------|-----------------------------------------------|----------|
| 1                 | 3694                                          | 42%      |
| 2                 | 6004                                          | 69%      |
| 3                 | 6909                                          | 79%      |
| 4                 | 7367                                          | 84%      |
| 6                 | 7825                                          | 90%      |
| 10                | 8193                                          | 94%      |

## Conclusion:

- If the slab segments have a width to thickness-ratio of 1, already 42% of the torsional rigidity of a two way slab is reached.
- If the slab segments have a width of 60cm and a thickness of 20cm ( $\frac{b}{t} = \frac{60}{20} = 3$ ), 79% of the torsional rigidity of a two way slab is reached.

If the slab segments have a width of 60cm and a thickness of 15cm ( $\frac{b}{t} = \frac{60}{15} = 4$ ), 84% of the torsional rigidity of a two way slab is reached.

So a meaningful value for the torsion factor for one way slabs is  $\pm$  80%.



Note: for preslabs and hollow core slabs ( and and ) the torsional rigidity is calculated assuming a width/ thickness ration  $\frac{b}{e} = 3$ .

## References:

- J. Blaauwendraad, *Plates and FEM*, Surprises and Pitfalls, Springer, 2010, §21.2.2
- D. Vandepitte, Berekening van constructies, Deel I, E. Story-Scientia Gent, 1979, §2.4

