1. Why do peaks arise?

Consider a square plate (side 1m) compressed by two opposed loads of 100kN¹:

Using Diamonds (= FEM software) we calculate the stress $\sigma_{xx,s}$ for different mesh fineness's:

Conclusions:

- It is expected in a FE analysis that mesh refinement would make the stress result converge to its final correct value. That is the case in the middle of the plate, where you find the constant value of 0,3N/mm². But it is not the case at the borders, where **singularities** occurs.
- Singularities are inherent to FE analysis! There is no way to avoid them.
- Typical examples where singularities will occur:
 - o Inner corners
 - o At the end of a line support or line load
 - o Above a point support or point load

 $^{\rm 1}$ This test is called 'the Brazilian splittings test'.

2. How to handle peaks?

Eurocode doesn't give practical rules to handle peaks. The only 'rule' it mentions, is one to spread the bending moment above a middle support of a continuous slab (see EN 1992-1-1 §5.3.2.2 (4)).

The paragraphs below given an overview of different measures to reduce the value of the peaks.

2.1. Method 1: modelling

The first step in 'Design' is making an analysis model out of the physical model. Although this step is often underestimated, it is of major importance because **garbage in = garbage out**! You may not expect good results from a sloppy analysis model.

Making an analysis model cannot be done without simplifications. Yet some designers have trouble understanding what is relevant for the analysis and what not. Some common mistakes:

• Points and lines with no (structural) purpose.

Don't model small plates/holes.

• Join elements close to each other.

^{*} Source: Constructieleer, Gewapend beton 2, p281, ISBN 978-94-6104-006-0

2.2. Method 2: choice of supports

Singularities near point/ line supports arise because the real dimensions of the supports are neglected. As the supports usually have no dimensions in FEM software, the theoretical values will become more present with smaller mesh sizes. The theoretical value is infinite for a point support. As an alternative, springs could be used. An overview:

Fixed support(line)	1 (or more) elastic point spring(s)	Elastic foundation					
	i						
Quick & simple	Quick & simple	More complex					
Only 1 point / line required	Only 1 point / line required	Additional points & plate required					
Large mesh possible	Large mesh possible	Small mesh required					
No deformation in the support	Realistic deformation	Realistic deformation					
Sensitive for peaks	(Limited) damping peak	Damping peak					
No redistribution	Redistribution of the forces	Redistribution of the forces					
Interesting for large models	Interesting for large models	Interesting for small models					
k = fixed	$k = \frac{E_{column} \cdot A_{column}}{l_{column}}$	$k = \frac{E_{column}}{l_{column}}$					

2.3. Method 3: choice of the mesh size

To test which mesh size would make sense, we compare theoretical results with Diamonds results.

Consider a 2 way slab (thickness 20cm) with the following dimensions and supports. The applied load is 5KN/m². A symmetrical mesh is used.

We compare the total moment along the pink cut line in Diamonds with the theoretical value 400kNm (= 5kN/m²*4m*10m*4m/2) for different mesh sizes. In the process, we also compare the peak value of the moment above the supports.

0.8m (4 x plate thickness)	93.3	404.9kNm (101.2%) 93.3kNm (100%)
0.4m (2 x plate thickness)	107.1	404.6kNm (101.2%) 107.1kNm (114.8%)
0.2m (1 x plate thickness)	124.0	406.5kNm (101. 6%) 124kNm (132.9%)
0.1m (0.5 x plate thickness)	140.4	408.9kNm (102.2%) 140.4kNm (150.5%)

Conclusions:

- How smaller the mesh, the better the theoretical values are approached. But the higher the peak value above the support (=singularities) and the longer the calculation time.
- You may never compare peak results.
- If you take the maximum mesh size between 2 and 4 times the plate thickness, the obtained results are acceptable within the engineering accuracy.

Don't choose a mesh size smaller than the thickness of the plates.

2.4. Method 4: Smear out according to 'Plates and FEM'

This rule will spread out the moment over a distance s^3 :

 $s = 5 \cdot D$

With:

• *D* the diameter of the column

For a rectangular column D can be taken as $min(b_1, b_2)$, $max(b_1, b_2)$ or $0.5(b_1 + b_2)$, ... It is up to the engineer to make a responsible choice.

See §2.6 how this is practically done in Diamonds.

³ In the article 'Spreiding piekmomenten in vlakke plaatvloeren' you'll find 2d + D, with 'd' the effective height of the slab and D the diameter of the column.

2.5. Method 5: Smear out according to 'NEN 6720'

This rule will spread out the moment over a distance *s*.

$$s = b_2 + 1.5b_1 + 1.5h$$

With:

- b_1, b_2 the dimensions of the column
- h the thickness of the plate

See §2.6 how this is practically done in Diamonds.

2.6. Practical: smearing out in Diamonds

2.6.1. Using cut lines

In Diamonds, the spreading rule can be applied using cut lines. The same model as in §2.3 is used⁴.

• Temporarily turn off the results by clicking once on the active result icon.

🤪 Diamonds - Pieken_mesh.bsf - [Ventana 1 - Ax-	-sup. in plate (mm²/m)]	- 🗆 ×
🥮 Eile Edit View Select Display Analysis Options Windows Help	100	- 8 ×
□ ☞ ■ 집 ● ◎ □ ∽ ~ 田田田 Ⅲ ℡ 図 圖 % 殺 & 窓 ⊡ ⊕ 5	9/ I	Dorien 🔻 📕 🖵
🗑 🖥 🕅 Ventana 1 🔹 🚺 Résultats 💽 🖗 🖽 🛛	◙ ⊡ ♠ ⊅ १७ ९ ९ ଛ ∥ ◙ ◙	
F.T DU DU	max	= 0.0 Active level
File Da Dea	0.0 +	2.70 m
	0.0 +	2.70 m
	0.0 +	Evel manager
÷ ~	0.0 ↔ 0.0 ↔	Ground level
8	• 0.0	Drawing plane
	0.0 ↔	Y = 0.00 m Y = 2.70 m Z = 0.00 m
Aur Aur	0.0 +	Representation
(Aug) (Aug)	0.0 +-	**
	min	= 0.0
		Size
		Font 25 😴
		Loads 15
 ✓ 		Results 10 🗢
		Show groups
		None
		-x
	L	Z

• Draw a cutline from the support to the border of the plate.

- Modify the length of the cut line to the calculated spreading length (either using §2.4 or §2.5). Suppose a spreading **radius** of 50cm.
 - Switch the begin/end point with Change beginpoint
 - Enter the desired length.

Diamonds - Pieken_mesh.bsf - [Vent	ana 1 - Ax-sup. in plate (mm²/	m)] – 🗆 🗾
💝 File Edit View Select Display Analysis Options Windows Help		- 8 ×
□☞ ■ Q.@ \$ ∽ ~ 冊冊冊 Ⅲ № 図圖業設 & \$	\$P Ⅲ ④ F% ≥	Dorien 🔻 📕 🖵
😨 🗟 🗮 🛛 Ventana 1 🔹 🚺 Résultats 💌	📾 🖻 💹 🛃 👘 🛵 (??)	Q Q X
F_7 00 00		max = 0.0 Active level
The Wo Pro	Line p	properties: 1 2.70 m
		2.70 m
8		el manager
		und level
6	A	ving plane
	~	2.70 m
Auz Aug		0.00 m
	 Length 	0.5 m
C C C Edit cutline		Change beginpoint
√ ³ √ ³ √ ³ √ ³ Translate cutline	- Orienta Kan	
	Angle with XZ plan	0.0 • M [*]
	Hor, angle with X-axis	
		180.0 × β Sn
	Help	Cancel OK
		vi None v
		ZY and a second
•		
		//

• Show the results on a cutline 🔯 instead of on the entire model. Also show the reinforcement results again.

• Double click on the cut line for the total value and mean value. It is the mean value that will be applied in that area, not the peak value.

Operation Diamonds Pieken_mesh.bsf - [Ventana 1 - Ax-sup. in plate (mm²/m)]	- 🗆 🗙
🥗 Eile Edit View Select Display Analysis Options Windows Help	- 8 ×
□☞ ■ 집● □ ∽ ∼ 用用用 Ⅲ ■	Dorien 🔻 📕 🖵
Résultats Portana 1 I Résultats Résultats Portana 1 I Résultats	
F ₅ T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Active level
	2.70 m
	Evel manager
	Ground level
4907 +	Drawing plane
3626 -1813 -	Y = 2.70 m Z = 0.00 m
Average - Ax,sup in plate	Representation
total value Σ = 1421.00 mm²/m x m	
1	Size Font 25 文
average value Σ / L = 2842 mm²/m	Symbols 10 🔶
	Results 10 🚖
	Show groups
	//

2.6.2. Using reinforcement grid

In Diamonds, the spreading rule can be applied using the reinforcement grid. The same model as in §2.3 is used⁵.

• Click on 1. Check the option for the reinforcement grid and set the grid step equal to the calculated (either using §2.4 or §2.5) spreading length. Since we used a spreading **radius** of 50cm in §2.6.1, we're going to use the spreading **diameter** here, so 1m.

rrent configuration :			Save current configuration
ser configuration	•		Delete selected configuration
nfiguration name	tesultaten		
General Geometry Mesh Re	esults		
Representation Default scale	Manual scale		
Magnitude 10 with values C Maximum only C Max, begin and end	Magnitude 10 Color map F with iso-lines C iso-contours F with values	Foi Ma Ma V	tegnitude 20 tagnitude 20 tagnitude 20 i in color 5 Show resulting vector
ractical reinforcement	☐ min. reinforcement ☐ practical reinforcement ☑ reinforcement grid (thr detailed results) X' 1,00 Z' 1,00 m		
ars 1			6-111 A

Show the results for the reinforcement in the plates. Select the plate and click on a.
 In grid will calculate the mean reinforcement (in a grid equal to the entered grid step). The mean reinforcement in each direction is given next to the '+' sign. The largest value for the reinforcement in each direction is given in red.

#BuildSoft structurally loved by engineers

⁵ only the reinforcement in ULS is considered.

🏺 Detail on plate(s):1-A	w,sup																		<u> (19</u> 77)		>
	Ax,sup (mm² / 1 m) - Az,sup (mm² / 1 m)																					
		Detail on plate(s) : 1																				
		37+60	N N +299	237 +799	₩ +1332	1048	± 1264	574	840	4	4	4	1 1 0	124	584	15 +246	56 +1035	+1350	N 40 +784	12 +303	<mark>8</mark> +59	
		# +3	1 1 1 1 1 227	45 +713	973 +1734	879 +1416	说 +205	91 19	5 40	4	4	유	4	ω 40	≌ +1	370 +236	873 +1440	1070+1788	472+744	158	≛ +33	
Naz Naz		14 +4	5 +235	4 4 +653	970 +1717	948 +1529	41 8 +307	7343	40	4	40	4 0	4	₽0	68+1	13 +285	965 +1537	916 +1677	409 +678	129 +239	16 1 46	
		∓s:	7 +282	78 661	£2 +956	87 827	8 +251	6+6	4	4	4	4	4	4	8+6	97+252	73 +832	5 +985	78+648	17+282	- 56	
(0.00 - 0.022 - 0.000		- 76:	3 7 240	4 87	7668	7506	7 93	40	4	₽0	70	70	4	4	₽0	797	7 503	7663	7499	° 241	7 61	
0881 0221 0effi		760	p ² 234	- 489	7670	7501	1 93	₩	4	4	₽0	_ × ₽	4	\$	₽0	1 +84	7488	4 655	7502	9 241	7 62	
$\langle \sigma_{t_1} \rangle \langle \sigma_{2_1} \rangle \langle \sigma_{t_2} \rangle$		1 55	5 <u>№</u> +279	79 1 665	87 +997	연 842	8 +254	4 +2	₩	₽	∠ ∓₀	- 70	₽	70	5 +2	97 +256	劣 +835	74986	ਤ +661	6 +277	 56	
		15 +4:	127 5 +242	398 +675	988 +1724	976 +1508	428 +310	55+7	4	4	4	₽0	40	40	56 4 9	432 +322	976+1510	993 +1743	86 654	127+234	16 +45	
		₿ +33	2 16 2 +230	474 +724	1064 +1839	934 +1487	64 +212	82 4	1 4 0	₽	₽	4	₽	τ	79우	353 +207	943 +1486	1075+1852	471 +729	16 +228	44 +34	
Ry Ry Rz		у 3	125 +303	235 +791	217 +1343	134 +1057	140 +243	55 +3	8 40	4	4	4	4	840	55 +3	143 +244	13 +1043	214 +1338	238	125 +304	39 +60	
Show names		X																			l	
User configurati		ৰ চিড		8,642	y = 5,63	l6 Ax,s	up = 0 n	nm²/m	Az,sup	= 0 mm ²	⊧/m										G	ж

Notes:

- To change the font size:
 - o Close the detailed results
 - Change the font size to the desired value.
 - \circ Select the plate again, click on **\overline{\Xi}**.
- Since the reinforcement grid calculated the mean value over the grid step, the grid step should be chosen wisely. The dimensions of the plate in example §2.3 are 10 x 20m. If the grid step is set to 10m, the reinforcement would be smeared out over nearly the entire surface of the plate!

Page	11	of	11
------	----	----	----

🔫 Detail on plate(s) : 1 -	Ax, sup)																			۵	×
	Ax,sup (mm ² / 1 m) - Az,sup (mm ² / 1 m)																					
	Detail on plate(s) : 1																					
(Va Vz																						
(Haz) (Hzz) (Haz)		37	12 +299	37 +799	+1332	- +1048	⊕ +264	574	8 4 8	4	4	4	1 1 0	12 9	584	5 +246		+1350	₹ +784	12 +303	₩ +59	
(H1) (H2) (392)		₽ +34	166 +227	袋 713	973 +1734	879 +1416	3 +205	91 ⁴	540	₽	₽°	₽	₽	3 40	≌ +1	370+236	873 +1440	1070+1788	472	158 +229	₽ +33	
Nas Nzz Naz		14 4 6	125 +235	4 +653	970 +1717	948-1529	41 	734	4	4	4	4	₽	4	68 +1	Å +285	965 +1537	916 +1677	40 	129 +239	16-46	
N1, N2, N2, N4+2		1 57	ភ្ +282	78 661	62 -1956	87 827	8 +251	6	4	4	4	4	4	4	846	97 +252	ನ +832	႘ 1 985	78 +648	17 +282	∔ 56	
Conne Cozze Coeffe		7 63	1 240	487	7668	7506	-1 93	₩	₽	4	₽0	₩	₽	4	₽0	4 97	<mark>∓</mark> 503	7-663	7-499	<mark>7</mark> 241	4 61	
		1 60	1 234		7670	7501	- 93	₽	₽	₽0	₽ø [_ X _₽	₽	₽	₽	1 84] 488	4 655	9 502	7 241	7 62	
(σ_{t_1}) (σ_{2t_1}) (σ_{t_2})		1 -55	≌ +279	73 +665	87 997	원 842	8 +254	1 +2	₽	4	40 ₽0	₽0	₽	₽	л 42	97 +256	95 +835	77 +986	ය +661	16 +277	 56	
		15 45	127+242	398 +675	988 +1724	976 +1508	428 +310	55+7	4	₽	₽	4	₽	\$	56 4	432 +322	976+1510	993 +1743	386 +654	127+234	16 +45	
		å +32	168 +230	474 +724	1064	93 +1487	₩ +212	82 4	τ	°₽°	₽	₽	₽	Ξφ	79 우	35 +207	943 +1486	1075+1852	471+729	166 +228	4 +34	
Ry Ry RZ	У	39 +60	125 +303	235 +791	≥17 +1343	134 +1057	1 − +243	55+3	°40	4	4	4	₽	840	55 +3	143 +244	13 +1043	12 4 +1338	238 +790	125 +304	33 +60	
	Ŀ	Х																				
Show names																						
User configurati																						
Help 🖸 🎒	1	(ii) ~ 💽	→ × =	8,642	y = 5,63	l6 Ax,si	up = 0 m	nm²/m ∣	Az,sup	= 0 mm ²	⊧/m											<u>OK</u>

3. Conclusions

- Method 1 and 3 are indispensable in good FEM design.
- It is up to the engineer to make a judicious decision in the use of Methods 2, 4, 5 or a combination of these methods.
- Method 5 will not always result in a more conservative approach than Method 4.

4. Sources

- [1] J. Blaauwendraad, <u>Plates and FEM</u> Surprises and Pitfalls §11.2 and §14, Springer Dordrecht, 2010, ISBN978-90-481-3595-0
- [2] NEN 6720, Voorschriften beton Constructieve eisen en rekenmethoden (VBC 1995) §7.5.3.4
- [3] EN 1992-1-1:2005, <u>Eurocode 2: Ontwerp en berekening van betonconstructies</u> Deel 1-1: Algemene regels en regels voor gebouwen (+AC:2010)

