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The stiffness of plates 
 

1. Introduction 

The word ‘plate’ is a collective term for elements in which forces can be transferred in two directions. 

Floors, walls, bridge slabs and laminates are all plates.  

    
Hollow core floor Concrete walls Ribbed floor Laminate 

Figure 1: Examples of plates 

 

Plates can be loaded in their plane and perpendicular to their plane. The membrane behaviour 

describes how a plate reacts to loading in its plane. The bending behaviour1 describes how a plate 

reacts to loading perpendicular to its plane.  

To describe the behaviour we will need the rigidity of the plate. Rigidity is a measure for the resistance 

of an element against deformation (thus strain � and curvatures �).  

Once the rigidity is known, Diamonds will use it in the Finite Element Method2. The FEM chops the 

structure into a finite number of elements, which will then be logically linked to each other, allowing 

Diamonds to calculate the displacements of the structure. The stresses (and resulting sectional forces) 

can then be derived from the displacements because of these relations between them: 

• The kinematic equations give the relations between the displacements and the deformations. 

• The constitutive equations give information on the material behaviour, by providing the relations 

between the stresses and the strains.   

• The equilibrium equations give the relations between the loads and the stresses.  

 

� �, � � � 

displacements deformations stresses loads 

 

            kinematic   constitutive  equilibrium 

Figure 2: Scheme of relationships in a plate 

With the aim of determining the rigidity of plates, the focus of this document lies on the constitutive 

equation. More information on the other relations can be found in for example [2].  

 
1 The shear behaviour is not handled in this document since only Thin Plate Theory (neglecting the shear deformation of the plate) is implemented in Diamonds. 

The Thick Plate Theory (taking the shear deformation for plates into account) is not implemented. Thin Plate Theory is also called ‘Kirchoff Theory’, Thick Plate 

Theory is also called ‘Mindlin Theory’.   
2 short ‘FEM’, synonym ‘displacement method’ 
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2. An isotropic plate 

The simplest form of a plate is an isotropic plate. The word ‘isotropic’ refers to the material behaviour 

and means ‘homogeneous in all directions’, like solid steel. §2.1 describes the stress-strain relation for 

an isotropic material so the sectional forces (membrane forces and bending moments) can be 

calculated in §2.2. The example in §2.3 shows how the formula are used. 

2.1. Constitutive equations 

2.1.1. Hooke’s law in 3D 

If the material is subjected to a state of triaxial stress, associated normal strains will be developed in 

the material. The total strain in a direction equals the sum of all strains in that direction due to the 

stresses in each direction [4]:  

 �� 	 �� �� �� �_� � �� �� �� �_� � �� �� �� �_� �� 	 �� �� �� �_� � �� �� �� �_� � �� �� �� �_� �� 	 �� �� �� �_� � �� �� �� �_� � �� �� �� �_� 

 

(1) 

 

 
 

Taking Hooke’s law (� 	 � ∙ �) and Poisson’s ratio � into account, the expressions (1) transform into: 

 �� 	 �� �� �� �_� � �� �� �� �_� � �� �� �� �_� �� 	 ��� � � ��� � � ���  

�� 	 1� ��� � ��� � ���� 

 

 

 

 

(2) 

 �� 	 �� �� �� �_� � �� �� �� �_� � �� �� �� �_� �� 	 1� ��� � ��� � ����; �� 

 

 

(3) 

 �� 	 �� �� �� �_� � �� �� �� �_� � �� �� �� �_� �� 	 1� ��� � ��� � ���� 

 

(4) 
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If we apply a shear stress ���  to the element, the material will deform only due to a shear strain ���; 

that is ���  will not cause other strains in the material. Likewise ��� and ���  will only cause shear 

strains ��� and ��� .  

 

Figure 3: Hooke’s law for shear stress 

 

 

Hooke’s law relating shear stress and shear strain is: 

 ��� 	 1� ���;  ��� 	 1� ���;  ��� 	 1� ��� 
(5) 

 

Write equations (2), (3), (4) and (5) in matrix form (stress-strain) and Hooke’s law for a linear elastic 

material in 3D is obtained: 

 

⎣⎢⎢
⎢⎢⎡

��������������� ⎦⎥⎥
⎥⎥⎤ 	

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡
 

�%1 � �&%1 � 2�&%1 � �& � ∙ �%1 � 2�&%1 � �& � ∙ �%1 � 2�&%1 � �& 0 0 0� ∙ �%1 � 2�&%1 � �& �%1 � �&%1 � 2�&%1 � �& � ∙ �%1 � 2�&%1 � �& 0 0 0� ∙ �%1 � 2�&%1 � �& � ∙ �%1 � 2�&%1 � �& �%1 � �&%1 � 2�&%1 � �& 0 0 0� 0 0)*+ 0 � 00 0 �⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤
  

⎣⎢⎢
⎢⎢⎡

���������������⎦⎥⎥
⎥⎥⎤ 

 

 

 

 

(6) 

 

2.1.2. Hooke’s law in 2D 

If the plate is thin and there are no out-of-plane loads, it can be considered to be under plane stress. 

Than �� 	 0, ��� 	 ��� 	 0. Equation (6) simplifies to: 

 

 

 

,�-�.�-./ 	 �1 � �0 11 � 0� 1 00 0 1 � �2 2344444454444446789
 , �������/ 	 ,:;; :;0 :;<:;0 :00 :0<:;< :0< :<</ , �������/ 

 

 

 

(7) 

 

The 3x3 matrix 7:9 in equation (7) is called the elasticity matrix. 

Note: an alternative way to transform Hooke’s law from 3D to 2D is plane strain. But since Diamonds 

assumes plane stress, this is not treated. 

. 

* 

- 

�� 

�� ���
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2.2. Sectional forces 

The resultant membrane forces and moments can be calculated as the sum of the stresses (equ. (7)) 

over the thickness = of the plate: 

>?��?��?�� @ 	 A  >��������� @ B*C�0
C�0  

>D��D��D�� @ 	 A  >��������� @ * B*C�0
C�0  

This results in the following matrix equations (with nor ���  nor � depended of the thickness): 

 >?��?��?��@ 	 = �1 � �0 11 � 0� 1 00 0 1 � �2 2 >���������@ 	 = ∙ 7:9 >���������@ 	 ,B;; B;0 B;<B;0 B00 B0<B;< B0< B<</344445444467�9
>���������@ 

 

 

(8) 

 >D��D��D��@ 	 =E12 �%1 � �0& 11 � 0� 1 00 0 1 � �2 2 >������F�� @ 	 =E12 ∙ 7:9 >������F��@ 	 ,G;; G;0 G;<G;0 G00 G0<G;< G0< G<</344445444467H9
>������F��@ 

 

 

(9) 

Equation (8) expresses the membrane behaviour of an isotropic plate, equation (9) the bending 

behaviour.  

Notes:  

• The 3x3 matrix 7B9 in equation (8) is called the plate membrane stiffness matrix. The 3x3 matrix 7G9 in equation (9) is called the plate bending stiffness matrix. 

• In Diamonds equations (8) and (9) are combined in one matrix equation. And B;< 	 B0< 	 G;< 	G0< 	 0 (more info in §Fout! Verwijzingsbron niet gevonden. : 

 

⎩⎪⎨
⎪⎧?��?��?��D��D��D��⎭⎪⎬

⎪⎫ 	
⎣⎢⎢
⎢⎢⎢
⎡B;; B;0 0 0 0 0B;0 B00 0 0 0 00 0 B<< 0 0 0G;; G;0 0)*+ G;0 G00 00 0 G<<⎦⎥⎥

⎥⎥⎥
⎤

⎩⎪⎨
⎪⎧���������������F�� ⎭⎪⎬

⎪⎫ 
 

 

 

(10) 
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2.3. Example: isotropic geometry – isotropic material 

 

 

 

 

 

 

 

 

 

 

 

 = 	 200++ 

Concrete C25/30: � 	 31 476?/++0, U 	 0,2   
 

2.3.1. Manual calculation of the stiffness properties 

We use equation (8) to describe the membrane behaviour. 

B;; 	 B00 	 � ∙ =1 � �0 	 31 476?/++0 ∙ 200++1 � 0,20 	 6 557 ∙ 10EW?/+ 
B;0 	 B0; 	 � � ∙ =1 � �0 	 � ∙ B;; 	 0,2 ∙ 6557 ∙ 10EW?/+ 	 1 311 ∙ 10EW?/+ 

B<< 	 12 %1 � �& � ∙ =1 � �0 	 12 %1 � �& ∙ B;; 	 12 %1 � 0,2& ∙ 6557 ∙ 10EW?/+ 	 2 623 ∙ 10EW?/+ 
 

We use equation (9) to describe the bending behaviour. 

G;; 	 G00 	 � ∙ =E12%1 � �0& 	 31 476?/++0 ∙ %200++&E12%1 � 0,20& 	 21 858W?+ 
G;0 	 G0; 	 � � ∙ =E12%1 � �0& 	 � ∙ G;; 	 0,2 ∙ 21 858W?+ 	 4 372W?+ 

G<< 	 12 %1 � �& � ∙ =E12%1 � �0& 	 12 %1 � �& ∙ G;; 	 12 %1 � 0,2& ∙ 21 858W?+ 	 8 743W?+ 
2.3.2. Comparison with Diamonds 

The stiffness matrix of an isotropic plate in Diamonds gives the same results as calculated by hand: 

 

Note: If you want to compare the stiffness matrix in Diamonds to manual calculations, make sure the 

correct standard (here EN 1992-1-1 [--]) is selected. Some materials have a different Young’s modulus 

depending on the standard/ national annex.  

.’ 

-’ 

7B9 

7G9 
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3. Other plate types 

Many plate types cannot be handled as an isotropic plate. Stiffeners may occur and they can be 

different in two orthogonal directions (§3.1). Not all materials have isotropic properties, a material can 

have different properties in two mutually perpendicular directions. This type of material is called 

orthotropic (§3.2). A plate can also be composed of multiple orthotropic layers. This type of plate is 

called a laminate (§3.3).  

3.1. Orthotropic geometry (single I-slab) – isotropic material 

 

 

 

 

 

 

 

 

          

 

 

 

Y 	 100++, Y; 	 600++, Y0 	 100++ YE 	 200++, YZ 	 400++ 

 [\ 	 50 000 ++² (dark grey zone) �̂� 	 2 325 000 000 ++Z (moment of 

inertia light + dark grey zone) 

 
Concrete C25/30: � 	 31 476?/++0 U 	 0,2 

 

 

In this example we will replace the real shape of the plate with a solid plate taking the geometry of the 

stiffeners into account. This method is referred to as shape-orthotropy. It can be used for plates with 

repeating stiffeners with regular spacing.  

The formula for the stiffness components are [2]: 

7B9 	 ,B;; B;0 B;<B;0 B00 B0<B;< B0< B<</ 	
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

� ∙ =1 � �0356_`a`�`�� �b`c��_�d`edf\�
� � ∙ [\g356_`a`�`�� �b hCci\d� d\_�ccj\_� ���

� ∙ B00 0
� ∙ B00 � ∙ =1 � �0 0

0 0 12 %1 � �& ∙ B00⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 

7G9 	 ,G;; G;0 G;<G;0 G00 G0<G;< G0< G<<.\l/ 	
⎣⎢⎢
⎢⎢⎢
⎡� ∙ ^��g � ∙ G00 0
� ∙ G00 � ∙ =E12%1 � �0& 0

0 0 0,5 ∙ � ∙ m;0 � m0;2 ⎦⎥⎥
⎥⎥⎥
⎤
 

 

The torsional rigidity G<< needs special attention. Using here the formula for an isotropic plate will 

underestimate the torsional rigidity, because the stiffeners are neglected. The alternative is to 

calculate the torsional rigidities per units length in each direction (m��  and m��& and take the average, 

resulting in G<<.\l. Formula for the rigidity per units length are given in Figure 4. 

 

.’ 

-’ 

Y; 

Y0 Y 

YZ 

Y0 

YE 
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 TORSIONAL RIGIDITY PER UNIT LENGTH n 

 

ISOTROPIC PLATE 
YE6  

 

RECTANGLE (o > q& m%g, r& 	 gEr16 s163 � 3,36 gr t1 � gZ12rZuvY;  

Figure 4: Torsional rigidity per unit length 7w9, 7x9 
3.1.1. Manual calculation of the stiffness properties 

B;; 	 31 476?/++0 ∙ 100++%1 � 0,20& � 31 476?/++0 ∙ 50 000++²600++ 	 5 902 ∙ 10EW?/+ 
B00 	 31 476?/++0 ∙ 100++%1 � 0,20& 	 3 279 ∙ 10EW?/+ B;0 	 B0; 	 656 ∙ 10EW?/+ B<< 	 12 %1 � 0,2& ∙ 3 279 ∙ 10EW?/+ 	 1 312 ∙ 10EW?/+ 

 

G;; 	 31 476?/++0 ∙ 2 325 000 000 ++Z600++ 	 121 970W?+ 
G00 	 31 476?/++0 ∙ %100++&E12%1 � 0,20& 	 2 732 W?+ G;0 	 G0; 	 0,2 ∙ G00 	 0.2 ∙ 2 732W?+ 	 546 W?+ 

 

To calculate the torsional rigidity in the z-direction m;0, the I-section can be seen as a sum of rectangles 

[7]. In the x’-direction m0; we use the formula for an isotropic plate. 

 m;0 	 m%Y, Y;& � m%Y0, YE � YZ& � m%YZ, Yz&Y; 	 m%100++, 600++& � m%100++, 200++& � m%100++, 200++&600++	 771 470++E 

 m0; 	 YE6 	 %100++&E6 	 166 667++E 

 G<<.\l 	 0,5 ∙ 31 476?/++02%1 � 0,2& ∙ %771 470 � 166 667&++E2 	 3076W?+ 
3.1.2. Enter the stiffness in Diamonds 

To use the calculated stiffness in Diamonds: 

• Select this shape . 

• In the tab page Dimensions: assign a thickness and a material to the plate. Diamonds will use this 

to calculate the self-weight of the plate.  

• Go to the tab page Stiffness matrix. Enter the values for the stiffness. 
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Notes:  

• The stiffness matrix was determined based on the real shape of the plate, but the real shape 

itself is unknown to Diamonds. Therefor it is not possible to calculate elastic stresses, 

reinforcement or creeped deformation for this plate type.  

If you do want to take those effects into account, they should be implemented in the stiffness 

matrix.  

 

3.2. Isotropic geometry – orthotropic material 

 

 

 

 

 

 

 

 

 

 = 	 20++ 

 

Norway Spruce (Dinwoodie, 2000): �; 	 10 700?/++0 %-′ � Bm|Y}=m~�& �0 	 430?/++0 %.′ � Bm|Y}=m~�& � 	 620?/++0 �;0 	 0.51, �0; 	 0.02 

 

The formula for the stiffness components are [5]: 

7B9 	 ,B;; B;0 B;<B;0 B00 B0<B;< B0< B<</ 	
⎣⎢⎢
⎢⎡ �; ∙ =1 � �;0�0; �0; ∙ B;; 	 �;0 ∙ B00 0
�0; ∙ B;; 	 �;0 ∙ B00 �0 ∙ =1 � �;0�0; 00 0 � ∙ =⎦⎥⎥

⎥⎤
 

7G9 	 ,G;; G;0 G;<G;0 G00 G0<G;< G0< G<<.\l/ 	
⎣⎢⎢
⎢⎢⎢
⎡ �; ∙ =E12%1 � �;0�0;& �0; ∙ G;; 	 �;0 ∙ G00 0
�0; ∙ G;; 	 �;0 ∙ G00 �0 ∙ =E12%1 � �;0�0;& 0

0 0 0,5 ∙ � ∙ m;0 � m0;2 ⎦⎥⎥
⎥⎥⎥
⎤
 

We recognize these formula for the elasticity matrix 7:9: 

 :;; 	 �;1 � �;0�0; ;  :00 	 �01 � �;0�0; ; :;0 	 :0; 	 �0; ∙ :;; 	 �;0 ∙ :00; :<< 	 � 
(11) 

 

.’ 

-’ 
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3.2.1. Manual calculation of the stiffness properties 

B;; 	 10 700?/++0 ∙ 20++1 � 0.02 ∙ 0.51 	 216.2 ∙ 10EW?/+ 
B00 	 430?/++0 ∙ 20++1 � 0.02 ∙ 0.51 	 8.7 ∙ 10EW?/+ 

B;0 	 B0; 	 0.02 ∙ 216.2 ∙ 10EW?/+ 	 4.3 ∙ 10EW?/+ B<< 	 620?/++² ∙ 20++ 	 12.4 ∙ 10EW?/+  
G;; 	 10 700?/++0 ∙ %20++&E12%1 � 0.02 ∙ 0.51& 	 7.21W?+ 

G00 	 370?/++0 ∙ %20++&E12%1 � 0.02 ∙ 0.51& 	 0.29W?+ 

G;0 	 G0; 	 0.057 ∙ 7.21W?+ 	 0.14W?+ 

G<<.\l 	 0,5 ∙ 620?/++0 ∙ 0.5 ∙ �%20++&E6 � %20++&E6 � 	 87.3W?+ 

3.2.2. Enter the stiffness in Diamonds 

To use the calculated stiffness in Diamonds: 

• Select this shape . 

• In the tab page Dimensions: assign a thickness and a material to the plate. Diamonds will use this 

to calculate the self-weight of the plate.  

• Go to the tab page Stiffness matrix. Enter the values for the stiffness. 

 

Notes 

• The stiffness matrix was determined based on the real shape of the plate, but the real shape 

itself is unknown to Diamonds. Therefor it is not possible to calculate elastic stresses, 

reinforcement or creeped deformation for this plate type.  

If you do want to take those effects into account, they should be implemented in the stiffness 

matrix.  
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• If the principal axes of orthotropic are rotated over an angle � in relation to the local x’z’-

coordinate system, the elasticity matrix 7:9 will undergo a transformation to 7:9�. In the 

transformed elasticity matrix 7:9� the components :;<.� and :0<.� are no longer equal to zero [6].  

Diamonds assumes :;< 	 :0< 	 0, thus a plate with rotated principal axes of orthotropic is not 

possible with Diamonds. 

 

 

 

 

 

 

 

7:9 	 �:11 :12 0:12 :22 00 0 :66
� 

 

7:9� 	 ,:;;.� :;0.� :;<.�:;0.� :00.� :0<.�:;<.� :0<.� :<<.�/ 

 

 

 

  

.’ 

-’ 

� 



© BuildSoft, 2021  11 

3.3. Orthotropic geometry (laminate) – orthotropic material 

 

 

 

 

 

 

 
 
0° 

90° 

0° 

 

 

 3-ply plate 

• each ply has a thickness of 

20mm 

• the plies are numbered from 1 

to 3 starting from the bottom 

 

Norway Spruce (Dinwoodie, 2000): �; 	 10 700?/++0 %-′ �Bm|Y}=m~�& �0 	 430?/++0 %.′ � Bm|Y}=m~�& � 	 620?/++0 �;0 	 0.51, �0; 	 0.02 

 

For a multi-ply laminate the relation for the sectional forces is a bit more complex than in §2.2. The 

purpose is to take the sum of the contributions of all laminate plies W [1] (Kubiak, 2013). 

>?��?��?��@ 	 A  >��������� @ B*��
���� 	 � A  >��������� @  B*��

����
�

��;3444445444446c�j �b �i e���_`���`�� �b �i l\_`��c f\�_c
 

>D��D��D��@ 	 A  >��������� @ * B*��
���� 	 � A  >��������� @ * B*��

����
�

��;3444445444446c�j �b �i e���_`���`�� �b �i l\_`��c f\�_c
 

Resulting in these matrix equations: 

 >?��?��?��@ 	 ,B;; B;0 B;<B;0 B00 B0<B;< B0< B<</344445444467�9
������������� � � ,�;; �;0 �;<�;0 �00 �0<�;< �0< �<</344445444467�9

>������F�� @ 

 

 

(12) 

 >D��D��D��@ 	 ,�;; �;0 �;<�;0 �00 �0<�;< �0< �<</344445444467�9
������������� � � ,G;; G;0 G;<G;0 G00 G0<G;< G0< G<</344445444467H9

>������F�� @  

(13) 

 

The components in the matrix 7B9, 7�9 and 7G9 are calculated with the formula:  

 B`� 	 ��:`���%*� � *�C;&�
�C;  

(14) 

 �`� 	 12 ��:`���%*�0 � *�C;0 &�
�C;  

(15) 

  G`� 	 13 ��:`���%*�E � *�C;E &�
�C;  

(16) 

 

The 3x3 matrix 7B9 and [G] in equations (12) and (13) are again the membrane and bending stiffness 

matrix. In literature the matrix [d] is referred to as matrix 7[9. The 3x3 matrix [�] in equations (12) and 

.’ 

-’ 

*’ 

.’ 

3 

 

2 

 

1 

 

*E 

*� 

*0 

*; 
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(13) is called the coupling matrix and relates the in-plane forces and the out-of-plane deformations. :`� in equations (14), (15) and (16) is the relevant component of the elasticity matrix. * is the distance 

from the outer edge of a ply towards the mid-plane.  

3.3.1. Manual calculation of the stiffness properties 

The elasticity matrix for a 0° ply is (11): 

:;; 	 �;1 � �;0�0; 	 10 700?/++01 � 0.51 ∙ 0.02 	 10 810?/++² 

 :00 	 �01 � �;0�0; 	 430?/++01 � 0.51 ∙ 0.02 	 434?/++² 

:;0 	 �0; ∙ :;; 	 0.02 ∙ 12 163?/++² 	 222?/++² 

:<< 	 � 	 620?/++0 

:;< 	 :0< 	 0 

7:9�° 	 ,:;; :;0 :;<:;0 :00 :0<:;< :0< :<</  	 ,10 810 222 0222 434 00 0 620/ 

In the elasticity matrix for a 90° ply, :;; and :00 switched places since the mean direction is rotated 90°: 

7:9��° 	 ,�ww :;0 :;<:;0 ��� :0<:;< :0< :<</  	 ,434 222 0222 10 810 00 0 620/ 

 

The first component B;; of the membrane stiffness is calculated with equation (14): 

B;; 	 :;.;;%30++ � 10++& � :0.;;�10++ � %�10++&� � :E.;;��10++ � %�30++&�       B;; 	 10 810 ∙ %30++ � 10++& � 434�10++ � %�10++&� � 10 810��10++ � %�30++&�	 441.1 ∙ 10EW?/+ 

The other components can be found the same way: 

B00 	 233.6 ∙ 10EW?/+ 

B;0 	 13.3 ∙ 10EW?/+ 

B<< 	 37.2 ∙ 10EW?/+ 

The first component G;; of the membrane stiffness is calculated with equation (16): 

G;; 	 13 �:;.;;%30³ � 10³& � :0.;;%10³ � %�10&³& � :E.;;�%�10&³ � %�30&³�� 
G;; 	 13 �10 810%30³ � 10³& � 434%10³ � %�10&³& � 10 810�%�10&³ � %�30&³�� 	 187.7W?+ 

The other components can be found the same way: 
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G00 	 14.7W?+ 

G;0 	 4.0W?+ 

G<< 	 11.2W?+ 

3.3.2. Enter the stiffness in Diamonds 

To use the calculated stiffness in Diamonds: 

• Select this shape . 

• In the tab page Dimensions: assign a thickness and a material to the plate. Diamonds will use this 

to calculate the self-weight of the plate.  

• Go to the tab page Stiffness matrix. Enter the values for the stiffness. 

 

Notes:  

• When defining a stiffness matrix, you’ll still be able to define a 

• Since the real shape of the plate is not known by Diamonds, no stresses nor reinforcement can be 

calculated. 

Pay attention when you calculate the stress: The strain varies linearly across the tickets. However, 

the stiffness properties (and thus the stresses) are discontinuous from one layer to the next! 

 

 

 

 

 

 

   

Hypothetical 3-ply laminate Strain variation Young’s modulus Stress variation 

Figure 5: Variation of strain and stress in a hypothetical 3-ply laminate 
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• The stiffness matrix in Diamonds assumes [1]: 

• B;< 	 B0< 	 0 

• G;< 	 G0< 	 0 

• 7�9 	 0 

This holds true, if all plies are orientated at 0° or 90° and when the composition of the plies is 

symmetrical. 

 

• The calculated values can be verified with the tool from the eFunda website: 

http://www.efunda.com/formulae/solid_mechanics/composites/calc_ufrp_abd_go.cfm 

3.3.3. Stiffness matrix for CLT plates 

For the stiffness matrix of CLT plates, some additional simplifications and modifications are usually 

made [8-9]: 

- The transverse stiffness E2=0  

 the net cross-section (with E=E1≠0) is used to determine I and A for each direction (including 

only the CLT layers with fibre parallel to the considered direction of load-bearing). 

- Transverse expansion (Poisson’s) coefficients ν12=ν21=0  

- The in-plane shear stiffness d66 and the torsional stiffness D66 are reduced by using additional 

reduction factors kS and kD [8], which take into account the influence of longitudinal joints or 

longitudinal cracks of the lamellas. 

Due to the small rolling shear stiffness of the transverse layers, the shear deformation of the plate 

usually needs to be considered. In Diamonds, the shear deformation cannot be considered explicitly, 

but it can be considered implicitly for simple cases such as simply supported plates loaded by uniform 

surface loads by using the gamma method. Using a gamma coefficient in the bending stiffness 

expression, the plate bending stiffness matrix elements D11  and D22 are reduced and thus the additional 

shear deformation is implicitly taken into account. More information about the gamma method and 

design examples can be found in [9-10]. 

The stiffness matrices can be made or verified by using e.g. Calculatis from Stora Enso 

(https://calculatis.storaenso.com/) or CLTdesigner from holz.bau (https://www.cltdesigner.at/). These 

stiffness matrices explicitly consider the shear deformation by using an expanded plate stiffness matrix 

[11]. Thus the plate bending stiffness matrix elements D11  and D22 determined using these resources 
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will not consider the shear deformation implicitly and will be different from those determined using 

the gamma method. 
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